The square lattice Ising model on the rectangle III: Hankel and Toeplitz determinants

نویسندگان

چکیده

Based on the results obtained in [Hucht, J. Phys. A: Math. Theor. 50, 065201 (2017)], we show that partition function of anisotropic square lattice Ising model $L \times M$ rectangle, with open boundary conditions both directions, is given by determinant a $M/2 M/2$ Hankel matrix, equivalently can be written as Pfaffian skew-symmetric $M Toeplitz matrix. The $M-1$ independent matrix elements matrices are Fourier coefficients certain symbol function, which ratio two characteristic polynomials. These polynomials associated to different directions system, encode respective conditions, and directly related through symmetry considered under exchange directions. generalized other well suited for analysis finite-size scaling functions critical limit using Szeg\H{o}'s theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

The Susceptibility of the Square Lattice Ising Model: New Developments

We have made substantial advances in elucidating the properties of the susceptibility of the square lattice Ising model. We discuss its analyticity properties, certain closed form expressions for subsets of the coefficients, and give an algorithm of complexity O(N6) to determine its first N coefficients. As a result, we have generated and analyzed series with more than 300 terms in both the hig...

متن کامل

VI.G Exact free energy of the Square Lattice Ising model

As indicated in eq.(VI.35), the Ising partition function is related to a sum S, over collections of paths on the lattice. The allowed graphs for a square lattice have 2 or 4 bonds per site. Each bond can appear only once in each graph, contributing a factor of t ≡ tanhK. While it is tempting to replace S with the exactly calculable sum S ′ , of all phantom loops of random walks on the lattice, ...

متن کامل

Lattice Theory and Toeplitz Determinants

This is a survey of our recent joint investigations of lattices that are generated by finite Abelian groups. In the case of cyclic groups, the volume of a fundamental domain of such a lattice is a perturbed Toeplitz determinant with a simple Fisher-Hartwig symbol. For general groups, the situation is more complicated, but it can still be tackled by pure matrix theory. Our main result on the lat...

متن کامل

Critical Ising on the Square Lattice Mixes in Polynomial Time

The Ising model is widely regarded as the most studied model of spin-systems in statistical physics. The focus of this paper is its dynamic (stochastic) version, the Glauber dynamics, introduced in 1963 and by now the most popular means of sampling the Ising measure. Intensive study throughout the last three decades has yielded a rigorous understanding of the spectral-gap of the dynamics on Z e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2021

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac0983